(19)中华人民共和国国家知识产权局

(12)发明专利

(10)授权公告号 CN 105852341 B (45)授权公告日 2018.02.09

(21)申请号 201610287811.3

(22)申请日 2016.05.04

(65)同一申请的已公布的文献号 申请公布号 CN 105852341 A

(43)申请公布日 2016.08.17

(73)专利权人 雨中鸟(福建)户外用品有限公司 地址 362000 福建省泉州市晋江市东石镇 金瓯工业区

(72)发明人 丁敬堂

(74) **专利代理机构** 泉州劲翔专利事务所(普通 合伙) 35216

代理人 汤国开

(51) Int.CI.

A45B 3/00(2006.01)

A45B 3/04(2006.01)

A45B 9/02(2006.01) *H02J 7/32*(2006.01)

(56)对比文件

CN 204245365 U, 2015.04.08,

CN 102447374 A, 2012.05.09,

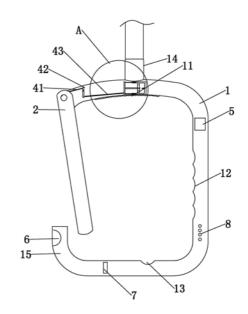
JP 2011119313 A,2011.06.16,

CN 202840657 U,2013.03.27,

CN 103767265 A, 2014.05.07,

CN 205585476 U,2016.09.21,

审查员 涂燕君


权利要求书1页 说明书3页 附图2页

(54)发明名称

一种自发电雨伞

(57)摘要

本发明涉及的是一种自发电雨伞,由伞骨、伞面和伞柄构成,伞柄由C形的固定部和摆动部构成中空的环状结构;固定部内设有发电装置、储电装置、以及与储电装置电性连接的供电接口;发电装置包括一磁性元件和一磁感应线圈,磁感应线圈置于磁性元件的周面,磁感应线圈耦接储电装置;还包括有一设于固定部的摆杆,摆杆位于发电装置与摆动部之间,摆杆的短部与摆杆位于发电装置与摆动部之间,摆杆的短部与摆动部的顶部通过一第一连杆连接。摆动摆动部,经第一连杆和第二连杆传动,使磁性元件和磁感应线圈产生相对运动,磁感应线圈产生感应电流,实现手动自主发电,同时手臂穿过环状结构的中空部穿过即可撑住雨伞,解放双手,更加实用。

- 1.一种自发电雨伞,包括带有中棒的伞骨、固定于伞骨顶部的伞面、以及安装于中棒的伞柄,其特征在于,伞柄包括C形的固定部和铰接于固定部上端的摆动部,固定部和摆动部构成中空的环状结构,中空部可供手臂穿过;固定部的顶部设有用于安装中棒的安装孔;固定部内设有发电装置、储电装置、以及与储电装置电性连接的供电接口;发电装置包括一磁性元件和一磁感应线圈,磁感应线圈置于磁性元件的周面,磁感应线圈耦接储电装置;还包括有一设于固定部的摆杆,摆杆位于发电装置与摆动部之间,摆杆的短部与摆动部的顶部通过一第一连杆连接,摆杆的长部与磁性元件通过一第二连杆连接;摆杆的长部长度至少是摆杆短部长度的2倍;摆动摆动部,经第一连杆和第二连杆传动,使磁性元件和磁感应线圈产生相对运动,磁感应线圈产生感应电流。
- 2.根据权利要求1所述自发电雨伞,其特征在于,发电装置还包括第一壳体和第二壳体,磁感应线圈固定于第一壳体的空腔内,磁性元件固定于第二壳体,第一壳体设有至少一个导槽,第二壳体设有至少一个导杆,导杆滑动连接于导槽。
- 3.根据权利要求2所述自发电雨伞,其特征在于,第二壳体还设有一弹簧,弹簧位于磁性元件运动方向的正前方,磁性元件抵于弹簧,弹簧回弹使磁性元件后退,经第一连杆和第二连杆联动,摆动部回复原状。
- 4.根据权利要求3所述自发电雨伞,其特征在于,弹簧与第二壳体之间安装有第一压电模组,第一压电模组耦接储电装置,磁性元件抵于弹簧,磁性元件经弹簧对第一压电模组施压产生第一电荷。
- 5.根据权利要求4所述自发电雨伞,其特征在于,导槽的底部安装有第二压电模组,第 二压电模组耦接储电装置,导杆抵于导槽底部,导杆对第二压电模组施压产生第二电荷。
- 6.根据权利要求1-5任一项所述自发电雨伞,其特征在于,储电装置电性连接有照明装置。
- 7.根据权利要求6所述自发电雨伞,其特征在于,储电装置电性连接有一显示装置,该显示装置用于表示储电装置的剩余电量。
- 8.根据权利要求1-5任一项所述自发电雨伞,其特征在于,固定部底部的内侧设置有一定位槽且其前端设有凸起。
- 9.根据权利要求1-5任一项所述自发电雨伞,其特征在于,固定部侧部呈竖直设置且设置有防滑凹纹。
- 10.根据权利要求1-5任一项所述自发电雨伞,其特征在于,固定部顶部的内侧设置有一软质垫片。

一种自发电雨伞

技术领域

[0001] 本发明涉及雨伞,尤其是涉及的是一种自发电雨伞。

背景技术

[0002] 现有伞具的伞柄主要有弯钩状和圆柱状两种,不管任何时候,用户都必须分出一只手来中棒或伞柄,而实际生活中,在站立等待或紧急情况下,人们更希望能够解放双手来提东西玩手机等。

[0003] 另外,随着智能手机各种功能的快速发展,手机耗电非常快速,用户迫切地希望能够实现随时随地充电。现有技术中,部分雨伞是在伞柄内安装有电池并设置一充电口,但是其本身不可自主发电,必须要借助外部电力或频繁更换电池,使用非常不方便。

发明内容

[0004] 本发明的目的在于克服上述不足,提供一种能够解放双手,并可自主发电为手机提供充电电源,结构简单、使用方便的自发电雨伞。

[0005] 为实现上述目的,本发明的技术解决方案是:一种自发电雨伞,包括带有中棒的伞骨、固定于伞骨顶部的伞面、以及安装于中棒的伞柄,伞柄包括C形的固定部和铰接于固定部上端的摆动部,固定部和摆动部构成中空的环状结构,中空部可供手臂穿过;固定部的顶部设有用于安装中棒的安装孔;固定部内设有发电装置、储电装置、以及与储电装置电性连接的供电接口;发电装置包括一磁性元件和一磁感应线圈,磁感应线圈置于磁性元件的周面,磁感应线圈耦接储电装置;还包括有一设于固定部的摆杆,摆杆位于发电装置与摆动部之间,摆杆的短部与摆动部的顶部通过一第一连杆连接,摆杆的长部与磁性元件通过一第二连杆连接;摆杆的长部长度至少是摆杆短部长度的2倍;摆动摆动部,经第一连杆和第二连杆传动,使磁性元件和磁感应线圈产生相对运动,磁感应线圈产生感应电流。

[0006] 优选的,发电装置还包括第一壳体和第二壳体,磁感应线圈固定于第一壳体的空腔内,磁性元件固定于第二壳体,第一壳体设有至少一个导槽,第二壳体设有至少一个导杆,导杆滑动连接于导槽。

[0007] 优选的,第二壳体还设有一弹簧,弹簧位于磁性元件运动方向的正前方,磁性元件抵于弹簧,弹簧回弹使磁性元件后退,经第一连杆和第二连杆联动,摆动部回复原状。

[0008] 优选的,弹簧与第二壳体之间安装有第一压电模组,第一压电模组耦接储电装置,磁性元件抵于弹簧,磁性元件经弹簧对第一压电模组施压产生第一电荷。

[0009] 优选的,导槽的底部安装有第二压电模组,第二压电模组耦接储电装置,导杆抵于导槽底部,导杆对第二压电模组施压产生第二电荷。

[0010] 优选的,储电装置电性连接有照明装置。

[0011] 优选的,储电装置电性连接有一显示装置,该显示装置用于表示储电装置的剩余电量。

[0012] 优选的,固定部底部的内侧设置有一定位槽且其前端设有凸起。

[0013] 优选的,固定部侧部呈竖直设置且设置有防滑凹纹。

[0014] 优选的,固定部顶部的内侧设置有一软质垫片。

[0015] 通过采用上述的技术方案,本发明的有益效果是:伞柄由C形的固定部和铰接于固定部上端的摆动部构成中空的环状结构,用户手臂可由环状结构的中空部穿过以撑住雨伞,实现解放双手,使用更加方便。固定部内设置由磁性元件和磁感应线圈构成的发电装置,通过操作摆动部使磁性元件和磁感应线圈产生相对运动,磁感应线圈产生感应电流实现手动发电,节能环保。摆动部经摆杆、第一连杆和第二连杆共计三个部件传动再联动磁性元件运动,有利于加强磁性元件和磁感应线圈相对运动,提高磁通量变化进而提高发电效率。

附图说明

[0016] 图1为本发明的结构示意图。

[0017] 图2为A部的放大图:

[0018] 主要附图标记说明:(1、固定部;11、软质垫片;12、防滑凹纹;13、定位槽;14、安装孔;15、凸起;2、摆动部;31、磁性元件;32、磁性线圈;33、第一壳体;331、导槽;34、第二壳体;341、导杆;35、弹簧;36、第一压电模组;37、第二压电模组;41、摆杆;42、第一连杆;43、第二连杆;5、储电装置;6、照明装置;7、供电接口;8、显示装置)。

具体实施方式

[0019] 以下结合附图和具体实施例来进一步说明本发明。

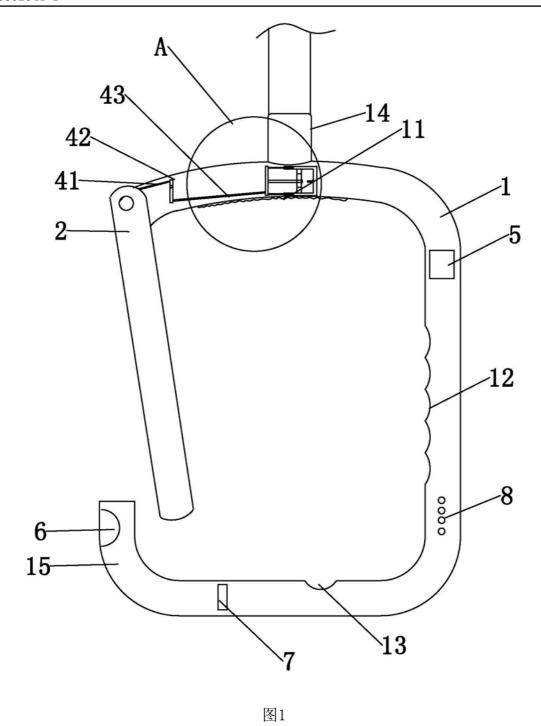
[0020] 一种自发电雨伞,包括带有中棒的伞骨(未示出)、固定于伞骨顶部的伞面(未示出)、以及安装于中棒的伞柄。如图1所示,伞柄包括C形的固定部1和铰接于固定部1上端的摆动部2。固定部1和摆动部2构成中空的环状结构,用户在等待或突发紧急状况时,手臂穿过中空部即可撑住雨伞使其不掉落,解放双手,使用更加方便。固定部1顶部外侧设有安装中棒的安装孔14,顶部内侧则设置有软质垫片11,加强用户手感,同时避免伞柄在手臂上滑动。为不影响用户握持感,固定部1侧部设置成竖直状且在其上方设有防滑凹纹12。固定部1底部的前端设置有一凸起15,该凸起15不仅能够防止物品掉落,还可限制摆动部2的最大外摆角度,固定部1底部内侧还设置有定位槽13,方便悬挂物品。

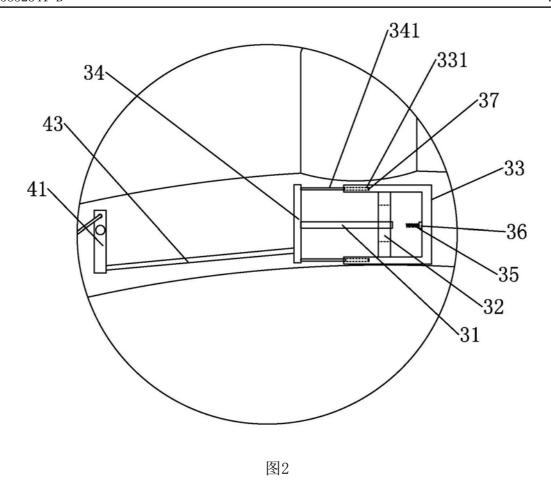
[0021] 如图2所示,固定部1由两瓣外壳(未示出)通过卡合具有空间的C形部件,固定部1内部的空间设有发电装置和储电装置5,而固定部1底部侧面安装有一与储电装置5电性连接的供电接口7。发电装置由第一壳体33、第二壳体34、一磁性元件31和一磁感应线圈32构成,磁感线圈32固定于第一壳体33的空腔内,磁性元件31固定于第二壳体34,磁感应线圈32置于磁性元件31的周面,磁感应线圈32耦接储电装置5。本结构中提到电性连接、耦接是指两个部件之间具有能量、数据或信号的传输,可以采用有限、无线等手段进行。

[0022] 固定部1顶部前端内交接有一摆杆41,即摆杆41位于发电装置与摆动部2之间。摆杆41的短部与摆动部2的顶部通过一第一连杆42连接,摆杆41的长部与磁性元件31通过一第二连杆43连接;优选的,摆杆41长部的长度是短部长度的2倍以上(包括2倍),长部和短部是以摆杆支点为分界点,长部和短部分别绕支点异向旋转。摆动摆动部2,经第一连杆42和第二连杆43传动,使磁性元件31和磁感应线圈32产生相对运动,磁感应线圈32产生感应电

流。

[0023] 第一壳体33设有至少一个导槽331,第二壳体34设有至少一个导杆341,导杆331滑动连接于导槽341内,使第二壳体34更为适应地相对第一壳体33运动。


[0024] 第二壳体34还设有一弹簧35,弹簧35位于磁性元件31运动方向的正前方,磁性元件31抵于弹簧35,弹簧35回弹使磁性元件31后退,经第一连杆42和第二连杆43联动,摆动部2回复原状,减轻发电动作、提高发电效率。


[0025] 弹簧35与第二壳体34之间安装有第一压电模组36,第一压电模组36耦接储电装置5,导槽341的底部安装有第二压电模组37,第二压电模组37耦接储电装置5。向内摆动摆动部2,第二壳体34带着磁性元件31朝第一壳体33移动,直至最内端,此时,磁性元件31经弹簧35对第一压电模组36施压产生第一电荷,导杆331对第二压电模组37施压产生第二电荷。增加第一压电模组36和第二压电模组37可提高本自发电雨伞动能转化为电能的效率。

[0026] 上述弹簧35、第一压电模组36和第二压电模组37是用于辅助并增强作用,不是必要部件。

[0027] 为方便用户夜间行走,凸起15的前端安装有一照明装置6,照明装置6与储电装置5电性连接。储电装置5还电性连接有一显示装置8,显示装置8可以是若干LED灯组成,由LED灯亮起的多少来显示储电装置5电量的多少。

[0028] 以上所述的,仅为本发明的较佳实施例而已,不能限定本发明实施的范围,凡是依本发明申请专利范围所作的均等变化与装饰,皆应仍属于本发明涵盖的范围内。

